

Einen neue AGM Batterie: die AGM Super Cycle Batterie

www.victronenergy.com

Ein wahrhaft innovative Batterie

Die AGM Super Cycle Batterien sind das Ergebnis der neusten Entwicklungen auf dem Gebiet der Elektrochemie von Batterien. Die Paste an den positiven Platten wird nicht so schnell weich, selbst wenn die Batterie mehrmals zu 100 % entladen wird. Außerdem reduzieren die neuen Zusätze im Elektrolyt die Sulfatierung im Falle einer Tiefenentladung.

Außergewöhnliche Leistung trotz wiederholter Tiefenentladung

Test haben ergeben, dass die Super Cycle Batterie selbst nach mindestens dreihundert 100 %-tigen Tiefenentladungen noch leistungsfähig ist.

Bei den Test wurde die Batterien täglich bis auf 10,8 V mit I = 0,2 C_{20} entladen. Daraufhin wurden sie für zwei Stunden im entladenen Zustand belassen und dann wieder mit I = 0,2 C_{20} aufgeladen.

Die meisten Batterien werden beschädigt, wenn sie 100 Mal für zwei Stunden im entladenen Zustand belassen werden, nicht jedoch die Super Cycle Batterie.

Wir empfehlen den Einsatz der Super Cycle Batterie in Fällen, in denen eine gelegentliche Entladung zu 100 % (Tiefenentladung) oder eine häufigere Entladung bis auf 60-80 % zu erwarten ist.

Kleiner und leichter

Ein weiterer Vorteil der neuen chemischen Zusammensetzung ist, dass die Batterien im Vergleich zu unseren bisherigen Tiefenzyklus AGM-Batterien kleiner sind und weniger wiegen.

Geringer Innenwiderstand

Der Innenwiderstand ist außerdem auch leicht geringer als bei unseren üblichen Tiefenzyklus-AGM-Batterien.

Empfohlene Ladespannung:

	_		
	Float	Cycle service	Cycle service
	Service	Normal	Fast recharge
Konstant-spannung		14,2 - 14,6 V	14,6 - 14,9 V
Ladeerhspannung	13,5 - 13,8 V	13,5 - 13,8 V	13,5 - 13,8 V
Lagermodus	13,2 - 13,5 V	13,2 - 13,5 V	13,2 - 13,5 V

Technische Daten

	recinisenc Datei									
	Artikelnummer	٧	Ah C5 (10,8V)	Ah C10 (10,8V)	Ah C20 (10,8V)	LxBxH mm	Gewicht kg	CCA bei 0°F	RES KAP bei 80°F	Anschlüsse
	BAT412015081	12	13	14	15	151 x 100 x 103	4,1			M5 Einsatz
	BAT412025081	12	22	24	25	181 x 77 x 175	6,5			M5 Einsatz
	BAT412038081	12	34	36	38	267 x 77 x 175	9,5			M5 Einsatz
	BAT412060082	12	52	56	60	224 x 135 x 178	14	300	90	M6 Einsatz
	BAT412110081	12	82	90	100	260 x 168 x 215	26	500	170	M6 Einsatz
	BAT412112081	12	105	114	125	330 x 171 x 214	33	550	220	M8 Einsatz
	BAT412117081	12	145	153	170	336 x 172 x 280	45	600	290	M8 Einsatz
	BAT412123081	12	200	210	230	532 x 207 x 226	57	700	400	M8 Einsatz

Lebenszyklus

- \geq 300 Zyklen bei 100 % Tiefenentladung (Entladung auf 10,8 V mit I = 0,2C₂₀, danach für ca. 2 Stunden im entladenen Zustand belassen und dann wieder mit I = 0,2 C₂₀ aufgeladen.)
- \geq 700 Zyklen bei 60 % Tiefenentladung (drei Stunden lang Entladung mit I = 0,2C₂₀, sofortiges Wiederaufladen mit I = 0,2C₂₀) \geq 1000 Zyklen mit 40 % Tiefenentladung (zwei Stnden lang Entladung mit I = 0,2 C₂₀, sofortiges Wiederaufladen mit I = 0,2C₂₀)

Temperatur Einfluß auf die Ladespannung

Die Ladespannung sollte mit steigender Temperatur zurückgenommen werden. Eine Temperatur-Kompensation wird bei länger anhaltenden Temperaturen unter 10°C / 50°F oder über 30°C / 85°F erforderlich. Die empfohlene Temperatur-Kompensation für Victron VRLA Batterien beträgt -4 mV / Zelle d.h. -24 mV / $^{\circ}\text{C}$ bei einer 12 V Batterie. Der Bezugspunkt für die Temperaturkompensation liegt bei 25°C / 70°F .

Super Cycle Batterie 12 V 230 Ah

